Robust regression via mutivariate regression depth

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Regression via Hard Thresholding

We study the problem of Robust Least Squares Regression (RLSR) where several response variables can be adversarially corrupted. More specifically, for a data matrix X ∈ Rp×n and an underlying model w∗, the response vector is generated as y = XTw∗+b where b ∈ R is the corruption vector supported over at most C ·n coordinates. Existing exact recovery results for RLSR focus solely on L1-penalty ba...

متن کامل

Robust Regression via Hard Thresholding

We study the problem of Robust Least Squares Regression (RLSR) where several response variables can be adversarially corrupted. More specifically, for a data matrix X ∈ Rp×n and an underlying model w∗, the response vector is generated as y = XTw∗ +b where b ∈ R is the corruption vector supported over at most C · n coordinates. Existing exact recovery results for RLSR focus solely on L1penalty b...

متن کامل

Robust Subspace Clustering via Thresholding Ridge Regression

In this material, we provide the theoretical analyses to show that the trivial coefficients always correspond to the codes over errors. Lemmas 1–3 show that our errors-removing strategy will perform well when the lp-norm is enforced over the representation, where p = {1, 2,∞}. Let x 6= 0 be a data point in the union of subspaces SD that is spanned by D = [Dx D−x], where Dx and D−x consist of th...

متن کامل

Robust Regression via Heuristic Hard Thresholding

The presence of data noise and corruptions recently invokes increasing attention on Robust Least Squares Regression (RLSR), which addresses the fundamental problem that learns reliable regression coefficients when response variables can be arbitrarily corrupted. Until now, several important challenges still cannot be handled concurrently: 1) exact recovery guarantee of regression coefficients 2...

متن کامل

Efficient Variation Decomposition via Robust Sparse Regression

In this work, we propose a new technique to accurately decompose process variation into lot‐ to‐lot, wafer‐to‐wafer, wafer‐level spatially correlated, wafer‐level random, within‐die spatially correlated and within‐die random variation components. Performing such variation decomposition narrows down the main variation sources in the manufacturing process, and offers valuable information for proc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bernoulli

سال: 2020

ISSN: 1350-7265

DOI: 10.3150/19-bej1144